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A method of stabflizfng nonlinear third order control systems is considered. 
The property of stablllty is achieved by increasing certain system parameters. 
Fxactly as in Cl], points in the phase space are first transferred to a cer- 
tain surface and then move over this surface to the origin of the coordinates 
in a slip regime. However, in contrast to [lJ, the introduction of addi- 
tional changed parameters permits to insure a slip regime for any motion 
throughout the whole time startingtith a certain Instant, and this affords 
the possibility of obtaining the property of asymptotic stability of the zero 
solution. 

Correction of a linear system by using many changed parameters was studied 
earlier [$?I, however, only the rlip conditions are obtained herein and sta- 
bility querkions are not considered. Let us note that in the linear case 
the possibility of achieving the asymptotic stability proprty for a third 
order system has been established OR the basis of an Idea in 111 by V.P.Ba- 
ranovskii. 

1. Let us consider the differential equation 

X '*a _t_ I;' (c,'X', ,$*a9 t) + (K 1 x 1 + K,I X.1) sign (X" - cp (X3 2')) = 0 (1.1) 

l-here K and K1 8re positive parameters &,x*,x'; t) and cp(x,x') are 
contunuous functions of their.arguments for all values af x,x:,z" and $3 0. 

Equation (1.1) is equlvafent to the system 

Let us assume compliance with conditions 

a) IF (s;y, z, t)]~(“j’1:j-sbj1~]-ic121 for any values ofx,y,z and 6>0. 
here n, b and c are non-negative constants. 

bf The function &t,g) is defined everywhere and is continuously differ- 
entlable with respect to WY and y , where positive numbers # and N 
exist such that 
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Y ftp @G Y) - tp (5, @I < 0 for Y # 0, s cp (2, 0) dx = 00 

7W 

It is easy to see that the right-hand side of the third equation of f 1.2) 
undergoes a discontinuity on the surface 
z== cp {x, 3). Let r(2, yt 2) = z---g, (2, s). If 

5 which IS given by Equation 

where the derivative dr/dt is taken by virtue of the equations of the 
system (1.2), then a motion Is defined on the surface S which is described 
by the system of differential equations 

It 1s accepted to say in this case that the system (1.3) describes the slip 
f egime . 

Let us note that the condition (a) guarantees continuation [3] (p.16) of 
the motion of the system (1.2) at least up to the time when the point hits 
the surface S . If all the points of a certain domain G of the chase 
.space hit the surface S during their motion, and then move over S to the 

origin with rising t by virtue of the system (1..3), then the required pro- 
perty of asymptotic stability of the zero solution is obtained. 

Theorem 1.1. Let the Functions j&,y,t,t) and &,y) satisfy 
condltlons (a), (b) and (c) and let the parameter xi be fixed and selected 
according to the inequality 

KI > b f M + cN + Na (2 4 

and let the bounded domain c of the phase space be given. A positive num- 
ber &, can be indicated such that for X > K, the zero solution of the 
system (1.2) will be asymptotically stable, where the domain G will lie 
in a region of attraction of the origin. 

Proof Let us first show that by increasing K , the slip regime 
of the whole surface S can be obtalned. Actual1 , taking the derivative . . of the function r(x,krz) by vlrtue of the system T 1.2), we have 

dr 
- = @ Is, y, rr t) - w I x I -I- 1y, i y I) sign r dt 

(1.5) 

The functions E’(X y,z,t) 
hence the function ilx,y,r,t) 

and rc(n,zl) satisfy the relations (a) and (b), 
also satisfies an inequality analogous to 

(a) 

l~(~,~,~,~)i~~l~l+~t~~S-~l~f . 
where 

A = a + CM +- NM, 3 = b + M -k cN -I- N”, C=cfN 

Let us calculate the limit values of the derivative dr/dt as the repre- 
sentative point of the system (1.2) approaches the surface S 
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for all values of x and y . 

In order to guarantee the slip regime on the whole surface r=z-cp(x,y)=C 
it is evidently Sufficient to require compliance with the Inequalities I(>A 
and K,, B . Let us now show that for any bounded domain S of the phase 
space, a value 
the domain G 

K,,> 0 can be selected such that for K > & any point M of 
moving along the trajectory of the system (1.2) with rising t 

will hit the surface 5' . 

Exactly as in Cl], let us make a change of variables In the system (1.2) 

x = 2, Y = PY, 2 = p?z, t = pz, . K-l/a 

The new system will have the form 

'dX dY 
-_=y -_=z 
dz ’ dz (1.6) 

dZ 

(R-Z - P%J(X, $)) 

-lXlsignR-pP2K11Y/signR -p3F 
( 
X,$, 

Z -= 
d7 --PI-,PT) 

For large values of K the quantity p plays the part of a small para- 
meter, hence the simplified system is written for p = 0 as 

dX dY dZ 
-_=y -_=Z 
dz ’ dz - = - 1 X lsign R ’ dz (1.7) 

Boundedness of 
from condition (b). 

pcp(x, Y/p) for small p and bounded x and Y fellows 

In [l, (2.3)] the system (1.7) has been Investigated and It has been shown 
that any point of the phase space moving with rising t along the trajectory 
,Jf the system (1.7) will hit the surface S at a finite time. Only points 
in phase space which lie on the Integral line X = - Y = Z are the exception; 
they approach the origin of the coordinates asymptotically. 

Boundedness of the quantity p'F(X, p_lY, -aZ, pi) In the domain C for 
small values of p follows from condition (a . Selecting p to be suffl- ! 
ciently small and usin; the well-known consideration resulting from the pro- 
perty of continuity of the solutions In a parameter, we arrive at the conclu- 
sion that all points of the domain G (with the exception of a narrow enough 
vicinity along the line X = - 
(1.6), 

Y = Z ) which move by virtue of the system 
will hit the surface S in a finite time interval and points of the 

vicinity mentioned will either emerge from this vicinity as time rises and 
hit S, or will remain within It and, therefore, will also hit S In a 
finite or infinite time interval. 

Having fallen on the surface S , 
it by virtue of the system (1.3). 

the representative point will move over 
Conditions (c) guarantee asymptotic sta- 

bility of the zero solution of this system according to [4]. Hence, It has 
been shown that any point of the domain C will approach the origin asymp- 
totically. 

Since the definition of asymptotic stability Includes the requirement of 
compliance with the usual property of stability In the Llapunov sence, It Is 
still necessary to show now that the points of a sufficiently small nelgh- 
borhood of the origin of the coordinates do not emerge beyond the limits of 
the given neighborhood. 

To do this, let us replace the coordinate 2 In the system (1.6) by the 
new coordinate R = Z - Ps~ (X,Y/p). The new system will have the form 

dX -_=y 
dz 

(1.8) 
dY 
- = R + P% (X, Y, P) t 

dZ 
dz x = - I X I sign R -I- PF, (X, Y, 2, p, 2) 
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Considering the half-space R 4 0 
sim.plifled system as 

for deflnfteneSs, let us write the 

(I.91 

p2vZdently the posltlve quantity $2 decreases and Y increases.along the 
trajectories of the system (1.9]* 
~n1fia.l paint jy, (xc ) 

Let is first shop that for an arbitrary 
u,, 2,) ta? follodr#g Iemma is valid: 

Lemma The point M(T) m~lng along the trajectory of? the system 
(1.9) ix&n not be in the domain [Xl> 6, R # 0 mose than Ro/6 tima units. 

ActualJy, we have 8 < A - 6~ from the last equation of (lag), where 7 
~;,K?G$wK& from the’InStan’t at which compliance with the inequality tXl>b 

. 
the R c: 0 

?z z- 19 /5 then A(T, f 
plane Ps the slip plane. 

will be negative, which may not be since 

Hence, within the time kterval [O, So 1 the point &T) either falls 
In the domain {Xi c 6 or hits the plane fi = 0. 

Let us note that if X c - 6 and Y < 0 or X 3 6 and Y 3 0 along 
the trajectory, then the point M(T) can hit only the R = 0 pbane. It 
hence follows that thiS point may be ?in the domain /Xl c 5 not mwe than 
twice. 

Now, let the initial point #c lie in the dam&n IX, 1 =c I , 1 Y. { =z 5 f 
WA,<& * Let us estimate the coordinates X(T)* Y(r) and t?(r) of the 
point M(T) moving from the pc&nt & &long the trajector~r of the system 
(1.9) up to the time of meeting the plane A = 0 II Let us first show that 
the inequality 

- 6 < y (5) < 48 (1.10) 

holds, 

Let us assume tha‘f; F,r 0 . Since X(r) and F(T) mag wily r&e, then 
let *O denote the time when 
u(Tct) J 8. 

K(Q) = C and leE Q’ denote the time when 
Me let 7t denote the time when the point Xf;~f me@x3 the R =O 

plane. 

Accordir~g to Lemma, if 7, = m then (X(T) e 6 for all positive values 
of 7 J iF also 7’” 10 then the inequality l,lO) will hold. Two,caseS 
are possible. In ?he f&sit case, let US assume that r,c TV’ . 

RccardzT>t< TF,@,, we have E’ (s) - y (z,‘) < Be f% - xc’) for q > ‘c<, but 
since z 
if z; G% &. 

- “iS < i, according co LeaD?a, we then Cbta:rI Y(z) < 2b, 

In the second case let us assume that TV’< +rc and let us estimate the 
difference TV - TV’ . According to (1.9) we have 

6 < Y (T) < R, (‘c - Q’) I-. 0 when c > ~~ (1.11) 

me left.-hand side of this in quality yields the estimate 

from whioh ~c - Q’ *: 2 follows, The right-hand Side of the same inequality 
Y (c)< 6 (2 - CB -I-- c(j *-. 50') + b < 46, since 

Now let us consider the ease when Yo< 0 , Ifi’ Y(T~ does not change 
sign, then (1.10) is satisfied, If F(T) changes sign at the time .r3 z 

then two cases ar-2 again possZbhle. Xn the case jxf~~jf -c 6 for 7 z 73 
the po&@, &f(r) faffs uricier the conditions which have been consfdered above. 
If however x(7, f c - B then accsrd;tng to Lemma the point 
be outside the strip 1x1 < 5 more than one time unit, but 

can not 
may 

increase but not more that b withit this time and, hence, the point M(T) 
again falls Into the domain 1x1 < 6 4 /U\ < 6 and the quantity Y(r) will 
be positive and, therefore, will satisfy the estimate (1.10). 
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Let us now show that until the point ~(7) hits 
inequality 

- 26< X(z)< 56 
will hold. 
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the R = 0 plane,the 

(1.12) 

Indeed, If the point ~(7) emerges Into the domain X > b , It will not 
return to the strip 1x1 < b and it must hit the I) = 0 plane. But in 
this case, X(Z) - x(2() < Y(T)(z - ze) for TO< T d TV. follows from (1.9) 

It follows from Lemma that 7 - 7cc 1 
0 < Y(T) < 51 . 

and from inequality (1.10) we have 
Hence, b < X(T) < 5b . 

If the point M(T) emerges into the domain X C- b at the time 7. then 
It will either hit the R = 0 plane without returning to the strip 
or It will return to this strip. In the first case wt obtain 

1x1~ 6 

- 6 (1; - %d) < x (4 - x (2,): 

from which X(7 
1 
> - 2b follows. In the second case the point M(r) returns 

to the domain XI < b , I;‘1 < b and the situation already considered will 
hold. Let us note that the minimum value of X(T~) in the s(:oond case will 
satisfy the inequality X(T~) > - 2b . 
together with the Inequality ~J?(T) 1 c b 

The inequalities (1.10) and (1.12) 
prove the asymptotfc stability for 

a slmpllfled system only. It follows from the discussion presented above 
that the point M(i) can be outside of the domain 1x1 < b, lUl < b not more 
than three units of time. Having used the known estimates of the deviation 
of the solution 651, I\; can be shown that the same estimates with the accu- 
racy of small orders of pb hold for trajectories of the system (1.8) start- 
ing on the boundary of the mentioned domain. 

Since the dynamical system on the R = 0 plane has the asymptotic sta- 
bility property and all the solutions have the property x(t) + 0, p(t) - 0 
and z(t) -0 as t-m according to what was proved above, then the asymp- 
totic stability of the zero SOlUtiOn of the SyStem (1.2) is now Oovious. 

Note 1.1 . Let m. > 0, y. > 0 and 20 >V (~0, ?/n). Using the result 
of Lemma, it is eas to obtain an estimate of the time of hit 2' of the 
point M (xc, I/O, z. 3 onto the slip surface S for the system (1.2). This 
estimate has the form 

T < zo - ‘p h Yo) 
\ Kxo (1 -I- 0 (P)) 

where O(p) denotes the order of magnitude of the smallness of p . 

If xo , yo and z. are numbers of arbitrary sign, the total residence 
time of the representative point In the domain 1x1 > b, B # cp(x,y) will not 
exceed 

* 
1 

= 3 I zn - g% Yo) I (1 -t 0 (P)) 

N 0 t e 1.2 . 
1 12) 
[a) (bP 

The method of obtaining the Inequalities (1.10) and 
ermlts replacement of the constraint of compliance with conditions 
and (c) in the whole phase space by the constraint of satisfying 

the; in a certain bounded domain G, . The proposed method may be used to 
estimate the domain G,. 

2. Let us consider the differential equation 

x"' + F (x, r’, x”) -t_ (K 1 x 1 + K, I x.1 -I- K,lx”[ sign (z" - cp (x, z')) = 0 (2.1) 

where the functions F(n, X', x") and m(x, n*) again satisfy conditions 
(a), (b) and (c). In contrast to the previous case, let us assume however, 
that the function F(x, n., x") is explicitly independent of t . 

Equation (2.1) Is equivalent to the system (2.2) 

5' = y, iy ' = z, z' = - F (T, ?J, 2) - (K 1x1 -I- K,/?J~ + KzI zl) sign (z --'p (x, y)) 
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T h e o r e m 2.1 . If the functions ‘F(x, v, Z) and ~(x, U) 
the conditions (a), (b) and (c) and the parameters 

satisfy 
.y, ,‘I1 anu .:.‘2 a:ae chosen 

according to the inequalities 

then the zero solution of the system (2.2) will be asymptotically stable in 
the large. 

Proof . Let us introduce the new coordinate p = z --c(x, y), t.he 
system (2.2) in the new x, u and 7 coordinates will be 

2’ :; Y Y’ = r + cp (r, Y) (2.4) 

r’ = - F (f, y, r -i- rp (2, y)) - 2 y - 3 (r + q (r, y)) - 

Let us consider, the Llapunov fvnctlon 
r 

L’ =_= $ I- y2 - 2 
5 

q~ (CC, 0) dx (2.5) 

0 

It follows from condition (c) that the function :’ will be poaltlve defi- 
nite and infinitely lar,ge [6] . 

Computing the derivative of the function 2 , by vll,tue of (2.4) we obtaln 

+ 2r [- F (r, y, r -t ‘f (x, y)) - -2 y -- -2; (r -:- q (r, y)) + y I 
Taking account of conditions (a) and (b), we obtain 

du 
x 6 2Y [cc (z, Y) - T (s, (31 - 

2 1 r 1 [(I; - a) 1 x / j- (K, - b - M - 1) ) y 1 -i- (K, -- c - K) 1 r -!- rp (J, y) 1 1 

Since the relationships (b) and (2.3) are saClsfied by the conditions of 
the theorem, it the:, follows from the last inequality that the de:,lvatlvc of 
the function 0 taken by virtue of the system (2.4), will be a negative 
function, vanishing on the x-axis. Evidently there are no entire tra,!ecto- 
ries of the system (1.2) on the x-axis with the exception of the singula!. 
point o(O,O,O); moreover, th? function u Is infinitely large. Hence, 
Theorem 4 of L61 may be applied, which lndeed completes the ?:,oof of ou:’ 
theorem. 

As regards considerations relative to the qualitative disposition of the 
traJectories of the system (1.2), It Is easy to see that the surface 
2 = 9(x, 1/) will be slip surface at all its points. This is canfirmed by 
computations similar CO those made In the proof of Theorem 1. Hence, the 
representative point of the system (2.2) either approaches asymptotically 
the origin directly as t - = or it hits first the slip surface aftei, a 
certain time and then also approaches the origin asymptotically by havIW 
moved over’ the surface. 
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