THEOREMS ON THE ASYMPTOTIC STABILITY OF SOLUTIONS OF CERTAIN THIRD ORDER DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS CHARACTERISTICS

(TEOREMY OB ASIMPTONIOHESKOI USTOICHIVOBMI RESHREII NEKOTORYKCH DIBFERFNSIAL'NXKH URAVIENIT WREM'BCO
 PORIADKA S RAZRYVNYM GHARAKTERISIIKAMI)

PMM Vol.28, No 3, 1964, pp.523-528
E.A.BARBASHIN and V.A.TABUEVA
(SverdIovsk)
(Received January 26, 1964)

A method of stabilizing nonlinear third order control systems is zonsidered. The property of stability is achieved by increasing certain system parameters. Fxactly as in [1], points in the phase space are first transferred to a certain surface and then move over this surface to the origin of the coordinates in a slip regime. However, in contrast to [1], the introduction of additional changed parameters permits to insure a slip regime for any motion throughout the whole time starting with a certain instant, and this affords the possibility of obtaining the property of asymptotic stability of the zero solution.

Correction of a linear system by using many changed parameters was studied earlier [2], however, only the $=11 p$ conditions are obtained herein and stability quesions are not considered. Let us note that in the linear cese the possibility of achieving the asymptotic stability proprty for a third order system has been estabilshed on the basis of an idea in [1] by V.P.Beranovikil.

1. Let us consider the differential equation

$$
\begin{equation*}
x^{\prime \prime \mu}+F\left(x, x^{\cdot}, x^{\prime \prime}, t\right)+\left(K|x|+K_{1}\left|x^{*}\right|\right) \operatorname{sign}\left(x^{\prime \prime}-\Phi\left(x, x^{*}\right)\right)=0 \tag{1.1}
\end{equation*}
$$

Here K and K_{1} are positive parameters $F\left(x, x^{*}, x^{\prime \prime}, t\right)$ and $\varphi\left(x, x^{*}\right)$ are contunuous functions of their-arguments for all values of $x, x ; x^{*}$ and $t \geqslant 0$.

Equation (1.1) is equivalent to the system

$$
\begin{equation*}
x^{*}=y, \quad y=z, \quad z=-F(x, y, z, t)-\left(K|x| \div K_{1}|y|\right) \operatorname{sign}(z-\varphi(x, y)) \tag{1.2}
\end{equation*}
$$

Let us assume compliance with conditions
a) $|F(x, y, z, t)| \leqslant a|x| \div b|y| \div c|z|$ for any values of x, y, z and $t \geq 0$. Here a, b and c are non-negative constants.
b) The function $p(x, y)$ is defined everywhere and is continuously differentiable with respect to x and F, where positive numbers H and N exist such that

$$
\left|\frac{\partial \varphi}{\partial x}\right| \leqslant M, \quad\left|\frac{\partial \varphi}{\partial y}\right| \leqslant N
$$

c) $x \varphi(x, 0)<0$ for $x \neq 0$

$$
y[\varphi(x, y)-\varphi(x, 0)]<0 \quad \text { for } \quad y \neq 0, \quad \int_{\mp \infty}^{\infty} \varphi(x, 0) d x=\infty
$$

It is easy to see that the right-hand sice of the third equation of (1.2) undergoes a discontinuity on the surface S which is given by Equation $z=\varphi(x, y)$. Let $r(x, y, z)=z-\varphi(x, y)$. If

$$
\lim _{r \rightarrow-0} \frac{d r}{d t}>0, \quad \lim _{r \rightarrow+0} \frac{d r}{d t}<0
$$

Where the derivative $d r / d t$ is taken by virtue of the equations of the system (1.2), then a motion is defined on the surface S which 1s described by the system of differential equations

$$
\begin{equation*}
x^{*}=y, y^{*}=\varphi(x, y) \tag{1.3}
\end{equation*}
$$

It is accepted to say in this case that the system (1.3) describes the slip regime.

Let us note that the condition (a) guarantees continuation [3] (p.16) of the motion of the system (1,2) at least up to the time when the point hits the surface S. If all the points of a certain domain G of the phase space hit the surface S during their motion, and then move over S to the origin with rising t by virtue of the system (1.3), then the required property of asymptotie stability of the zero solution is obtained.

Theoren 1.1 . Let the functions $F(x, y, z, t)$ and $\phi(x, y)$ satisfy conditions (a), (b) and (c) and let the parameter K_{1} be fixed and selected according to the inequality

$$
\begin{equation*}
K_{1} \geqslant b+M+c N+N^{2} \tag{1.4}
\end{equation*}
$$

and let the bounded domain G of the phase space be given. A positive number K_{0} can be indicated such that for $K>K_{0}$ the zero solution of the system (1.2) will be asymptotically stable, where the domain G will lie in a region of attraction of the origin.

Proof. Let us first show that by increasing K, the slip regime of the whole surface S can be obtained. Actually, taking the derivative of the function $r(x, y, z)$ by virtue of the system (1.2), we have

$$
\begin{equation*}
\frac{d r}{d t}=\Phi(x, y, r, t)-\left(K|x|+K_{1}|y|\right) \operatorname{sign} r \tag{1.5}
\end{equation*}
$$

Here

$$
\Phi(x, y, r, t)=-F(x, y, r+\varphi(x, y), t)-\frac{\partial \varphi}{\partial x} y-\frac{\partial \varphi}{\partial y}(r+\varphi(x, y))
$$

The functions $F(x, y, z, t)$ and $\varphi(x, y)$ satisfy the relations (a) and (b), hence the function $\Phi(x, y, r, t)$ also satisfies an inequality analogous to (a)

$$
|\Phi(x, y, r, t)| \leqslant A|x|+B|y|+C|r|
$$

where

$$
A=a+c M+N M, \quad B=b+M+c N+N^{2}, \quad C=c+N
$$

Let us calculate th limit values of the derivative $a r / d t$ as the representative point of the system (1.2) approaches the surface S

$$
\begin{aligned}
\lim _{r \rightarrow-0} \frac{d r}{d t} & =\Phi(x, y, 0, t)+K|x|+K_{1}|y|>(K-A)|x|+\left(K_{1}-B\right)|y| \\
\lim _{r \rightarrow+0} \frac{d r}{d t} & =\Phi(x, y, 0, t)-K|x|-K_{1}|y|<(A-K)|x|+\left(B-K_{1}\right)|y|
\end{aligned}
$$

for all values of x and y.
In order to guarantee the slip regime on the whole surface $r=z-\varphi(x, y)=0$ it is evidently sufficient to require compliance with the inequalities $K \geqslant A$ and $K_{1} \geqslant B$. Let us now show that for any bounded domain G of the phase space, a value $K_{0}>0$ can be selected such that for $K>K_{0}$ any point M of the domain G moving along the trajectory of the system (1.2) with rising t will hit the surface S.

Exactly as in [1], let us make a change of variables in the system (1.2)

$$
X=x, \quad Y=\rho y, \quad Z=\rho^{2} z, \quad t=\rho \tau, . \quad K^{-1 / 3}
$$

The new system will have the form

$$
\begin{gather*}
\frac{d X}{d \tau}=Y, \quad \frac{d Y}{d \tau}=Z \quad\left(R=Z-\rho^{2} \varphi\left(X, \frac{Y}{\rho}\right)\right) \tag{1.6}\\
\frac{d Z}{d \tau}=-|X| \operatorname{sign} R-\rho^{2} K_{1}|Y| \operatorname{sign} R-\rho^{3} F\left(X, \frac{Y}{\rho}, \frac{Z}{\rho^{2}}, \rho \tau\right)
\end{gather*}
$$

For large values of K the quantity p plays the part of a small parameter, hence the simplified system is written for $\rho=0$ as

$$
\begin{equation*}
\frac{d X}{d \tau}=Y, \quad \frac{d Y}{d \tau}=Z, \quad \frac{d Z}{d \tau}=-|X| \operatorname{sign} R \tag{1.7}
\end{equation*}
$$

Boundedness of $\rho \varphi(X, Y / \rho)$ for small ρ and bounded X and Y follows from condition (b).

In [1, (2.3)] the system (1.7) has been investigated and it has been shown that any point of the phase space moving with rising t along the trajectory of the system (1.7) will hit the surface S at a finite time. only points In phase space which lie on the integral line $X=-Y=Z$ are the exception; they approach the origin of the coordinates asymptotically.

Boundedness of the quantity $\rho^{2} F\left(x, \rho^{-1} Y, \rho^{-2} Z, \rho \tau\right)$ in the domain G for small vasues of ρ follows from condition (a). Selecting ρ to be sufficiently small and usins the well-known consideration resulting from the property of continuity of the solutions in a parameter, we arrive at the conclusion that all points of the domain G (with the exception of a narrow enough vicinity along the line $X=-Y=Z$) which move by virtue of the system (1.6), will hit the surface S in a finite time interval and points of the vicinity mentioned will either emerge from this vicinity as time rises and hit S, or will remain within it and, therefore, will also hit S in a finite or infinite time interval.

Having fallen on the surface S, the representative point will move over it by virtue of the system (1.3). Conditions (c) guarantee asymptotic stability of the zero solution of this system according to [4]. Hence, it has been shown that any point of the domain G will approach the origin asymptotically.

Since the definition of asymptotic stability includes the requirement of compliance with the usual property of stability in the Liapunov sence, it is still necessary to show now that the points of a sufficiently small neighborhood of the origin of the coordinates do not emerge beyond the limits of the given neighborhood.

To do this, let us replace the coordinate Z in the system (1.6) by the new coordinate $R=Z-\rho^{2} \varphi(X, Y / \rho)$. The new system will have the form
$\frac{d X}{d \tau}=Y, \quad \frac{d Y}{d \tau}=R+\rho \varphi_{1}(X, Y, \rho), \quad \frac{d Z}{d \tau}=-|X| \operatorname{sign} R+\rho F_{1}(X, Y, Z, \rho, \tau)$

Where ${ }^{(a)}(X, Y, O)$ and $F_{1}(X, Y, Z, p, T)$ also satisfy conditions of type
Consldering the half-space $R>0$ for definiteness, let us write the simplified system as

$$
\begin{equation*}
\frac{d X}{d \tau}=Y, \quad \frac{d Y}{d \tau}=R, \quad \frac{d R}{d \tau}=-|X| \tag{1.9}
\end{equation*}
$$

Eydently the positive quantity A decreases and Y increases, along the trajectories of the system (1.9). Let is first show that for an arbitrary initial point $N_{0}\left(X_{0}, Y_{0}, N_{0}\right)$ the following iemma is valid:

Lemma a The point $M(\tau)$ moving along the trajectory of the system (1.9) can not be in the domain $|x|>\delta, R \neq 0$ more than R_{0} / δ time units.

Actually, we have $A<R_{0}-\delta \tau$ from the last equation of (1.9), where T is measured from the instant at which compliance with the inequality $|x|>8$ starts. If $T_{1}>R_{0} / 5$ then $R\left(T_{1}\right)$ wlll be negative, which may not be since the $f=0$ plane ls the slip plane.

Hence, within the time interval $\left[0, T_{1}\right]$ the point $M(T)$ either falls in the domain $|X|<0$ or hits the plane $A=0$.

Let us note that if $X<-6$ and $Y<0$ or $X>8$ and $Y>0$ along the trajectory, then the point $M(\tau)$ can hit only the $R=0$ plane. It hence follows that this point may be in the domain $|X|<\delta$ not more than twice.

Now, let the initial point M_{0} Lie in the domain $\left|x_{0}\right|<6,\left|Y_{0}\right|<6$, $0<R_{0}<\theta$ Let us estimate the coordinates $X(T), Y(T)$ and $R(T)$ of the point $M(T)$ moving from the point M_{0} along the trafectory of the system (1.9) up to the time of meeting the plane $R=0$. Let us first show that the inequality

$$
\begin{equation*}
-\delta<Y(\pi)<4 \delta \tag{1.10}
\end{equation*}
$$

holds.
Let us assume that $Y_{0}>0$. Since $X(\tau)$ and $Y(\tau)$ may only rise, then jet to denote the time when $X\left(T_{0}\right)=\sigma$ and let To denote the time when $Y\left(T_{0}\right)=8$. We let T_{1} denote the time when the polnt $M(T)$ meets the $R=0$ plane.

Acoording to Lemma, if $\tau_{1}=\infty$ then $|X(\tau)|<6$ for all positive values of T, if also $T_{0}^{\prime}=$ then the inequality (1.10) will hold. Two, cases are possible. In the inst case, let us assume that $T_{0} \leqslant r_{0}{ }^{\prime}$.

According to $(1,9)$, we have $Y(\tau)-Y\left(\tau_{B}{ }^{2}\right) \leqslant R_{0}\left(\tau-\tau_{0}{ }^{2}\right)$ fon $\geqslant \tau_{0}{ }^{2}$, but since, $\tau-\tau_{0}^{*}<\tau_{1}-\tau_{0}^{t}<1$, according to Lemma, we then obtain $Y(\tau)<2 \delta$, if $\pi_{0} \leqslant \$ \leqslant \tau_{1}$.

In the secono case let us assume that $T_{0}{ }^{\circ}<T_{0}$ and let us estimate the difference T_{0} - T_{0}. Accurding to (1.9) we have

$$
\begin{equation*}
\delta<Y(\tau)<R_{0}\left(\tau-\tau_{0}{ }^{\prime}\right)+\delta \quad \text { when } \rightarrow>\sigma_{0}^{\prime} \tag{1.11}
\end{equation*}
$$

The left-hand stae of this in guality yielas the estimate

$$
\delta\left(\tau_{0}-\tau_{0}\right)+X\left(\tau_{0}\right)<X\left(\tau_{0}\right)
$$

from whioh $T_{0}-T_{0}^{\prime}<2$ follows. The right-hand side of the same inequality (1.11) ylelds the estimate $\quad Y(\%)<\delta\left(\tau-\tau_{0}+\psi_{0} \cdots \tau_{0}{ }^{\prime}\right)+\delta<4 \delta$, since according to Lemma $T \cdots T_{0}<1$.

Now let us considex the case when $V_{0}<0$. If $Y(T)$ does not change sign, then (1.10) is satisfied. If $Y(T)$ changes sign at the time ia , then two cases are again possible. In the case $|x(t a)| \ll$ for $T>$ Ts the point $H(T)$ falls under the conditions which have been considered above. If however $X\left(\tau_{3}\right)<-\delta, \quad$ then according to Lemma the point $M(T)$ can not increase but not more that o within this time and, hence, the point $M(T)$ again falls into the domain $|X|<8,|y|<8$ and the quantity $Y(T)$ wili be positive and, therefore, will satisfy the estimate (1.10).

Let us now show that until the point $M(r)$ hits the $R=0$ plane, the inequality

$$
\begin{equation*}
-2 \delta<X(\tau)<5 \delta \tag{1.12}
\end{equation*}
$$

will hold.
Indeed, if the point $M(\tau)$ emerges into the domain $X>0$, it will not return to the strip $|X|<\delta$ and it must hit the $R=0$ plane. But in th1s case, $X(\tau)-X\left(\tau_{0}\right)<Y(\tau)\left(\tau-\tau_{0}\right)$ for $\tau_{0} \leqslant \tau \leqslant \tau_{1}$. follows from (1.9)

It follows from Lemma that $\tau^{\top}-\tau_{0}<1$ and from inequality (1.10) we have $0<Y(\tau)<58$. Hence, $8<X(\tau)<58$.

If the point $M(\tau)$ emerges into the domain $X<-\delta$ at the time τ_{4} then it will either hit the $R=0$ plane without returning to the strip $|x|<0$ or it will return to this strip. In the first case we obtain

$$
-\delta\left(\tau-\tau_{4}\right)<X(\tau)-X\left(\tau_{4}\right)^{\prime},
$$

from which $X(\tau)>-28$ follows. In the second case the point $M(\tau)$ returns to the domain $|x|<\delta,|i|<\delta$ and the situation already considered will hold. Let us note that the minimum value of $X\left(\tau_{3}\right)$ in the sioond case will satisfy the inequality $x\left(\tau_{3}\right)>-28$. The inequalities (1.10) and (1.12) together with the inequality $|R(T)|<8$ prove the asymptotic stability for a simplified system only. It follows from the discussion presented above that the point $M(\dot{\tau})$ can be outside of the domain $|X|<8,|Y|<8$ not more than tiree units of time. Having used the known estimates of the deviation of the solution [5], ic can be shown that the same estimates with the accuracy of small orders of $\rho \delta$ hold for trajectories of the system (1.8) starting on the boundary of the mentioned domain.

Since the dynamical system on the $R=0$ plane has the asymptotic stability property and all the solutions have the property $x(t) \overrightarrow{0} y(t) \overrightarrow{0}$ and $z(t) \rightarrow 0$ as $t \rightarrow \infty$ according to what was proved above, then the asymptotic stability of the zero solution of the system (1.2) is now oovious.
$\mathrm{N} \circ \mathrm{t}$ e l.l. Let $x_{0}>0, y_{0} \geqslant 0$ and $z_{0} \geqslant \varphi\left(x_{0}, y_{0}\right)$. Using the result of Lemma, it is easy to obtain an estimate of the time of hit T of the point $M\left(x_{0}, y_{0}, z_{0}\right)$ onto the slip surface S for the system (1.2). This estimate has the form

$$
T \leqslant \frac{z_{0}-\varphi\left(x_{0}, y_{0}\right)}{K x_{0}}(1+O(\rho))
$$

where $O(\rho)$ denotes the order of magnitude of the smallness of ρ.
If x_{0}, y_{0} and z_{0} are numbers of arbitrary sign, the total residence time of the representative point in the domain $|x|>\delta, z \neq \varphi(x, y)$ will not exceed

$$
T_{1}=3 \frac{\left|z_{0}-\varphi\left(x_{0}, y_{0}\right)\right|}{K \delta}(1+O(\rho))
$$

Note 1.2 . The method of obtain'ng the inequalities (1.10) and (1.12) permits replacement of the constraint of compliance with conditions (a), (b) and (c) in the whole phase space by the constraint of satisfying them in a certain bounded domain G_{1}. The proposed method may be used to estimate the domain G_{1}.
2. Let us consider the differential equation

$$
\begin{equation*}
x \cdots+F\left(x, x^{*}, x\right)+\left(K|x|+K_{1}|x|+K_{2}\left|x^{\cdots}\right| \operatorname{sign}\left(x^{*}-\varphi(x, x)\right)=0\right. \tag{2.1}
\end{equation*}
$$

where the functions $F\left(x, x^{\cdot}, x^{\prime \prime}\right)$ and $\varphi\left(x, x^{*}\right)$ again satisfy conditions (a), (b) and (c). In contrast to the previous case, let us assume however, that the function $F\left(x, x^{\cdot}, x^{*}\right)$ is explicitly independent of t.

Equation (2.1) is equivalent to the system

$$
\begin{equation*}
x^{\cdot}=y, y=z, z^{*}=-F(x, y, z)-\left(K|x|+K_{1}|y|+K_{2}|z|\right) \operatorname{sign}(z-\varphi(x, y)) \tag{2.2}
\end{equation*}
$$

Theorem, 2.I. If the functions ${ }^{\prime} F(x, y, z)$ and $m(x, y)$ satisfy the conditions (a), (b) and (c) and the parameters V, V_{1} and V_{2} ave chosen according to the inequalities

$$
\begin{equation*}
K \geqslant a, \quad K_{1} \geqslant b+M+1, \quad K_{2} \geqslant c+N \tag{2.3}
\end{equation*}
$$

then the zero solution of the system (2.2) will be asymptotically stable in the large.

Proof. Let us introduce the new coordinate $r=z-r(x, y)$, the system (c.2) in the new x, y and r coordinates will be

$$
\begin{gather*}
x=y \quad y=r+\varphi(x, y) \tag{2.4}\\
r^{\prime}=-F(x, y, r-\varphi(x, y))-\frac{\partial \varphi}{\partial x} y-\frac{\partial \psi}{\partial y}(r+\varphi(x, y))- \\
\cdots\left(\kappa|x|+K_{1}|y|+K_{2}|r+\varphi(x, y)|\right) \operatorname{sign} r
\end{gather*}
$$

Let us consider the Liapunov function

$$
\begin{equation*}
v=r^{2}+y^{2}-2 \int_{0}^{x} \varphi(x, 0) d x \tag{2.5}
\end{equation*}
$$

It follows from condition (c) that the function y will be positive definite and infinitely large [6].

Computirg the derivative of the function v, by virtue of (2.4) we obtain

$$
\begin{aligned}
\frac{d v}{d t}= & 2 y[\varphi(x, y)-\varphi(x, 0)]-2|r|\left[K|x|+K_{1}|y|+K_{2}|r+\varphi(x, y)|\right]+ \\
& +2 r\left[-F(x, y, r+\varphi(x, y))-\frac{\partial \varphi}{\partial x} y-\frac{\partial \varphi}{\partial y}(r+\varphi(x, y))+y\right]
\end{aligned}
$$

Taking account of conditions (a) and (b), we obtain

$$
\begin{gathered}
\frac{d v}{d t} \leqslant 2 y[\varphi(x, y)-\varphi(x, 0)]- \\
2|r|\left[(K-a)|x|+\left(K_{1}-b-M-1\right)|y|+\left(K_{2}-c-N\right)|r+\varphi(x, y)|\right]
\end{gathered}
$$

Since the relationships (b) and (2.3) are satisfied by the condition: of the theorem, it the: follows from the last inequality that the derivative of the function v taken by virtue of the system (2.4), will be a negative function, vanishing on the x-axis. Evidently there are no entire tradectories of the system (1.2) on the x-axis with the exception of the singula: point $0(0,0,0)$; moreover, thie function v is infinitely large. Hence, Theorem 4 of [6] may be applied, which indeed completes the p:oof of our theorem.

As regards considerations relative to the qualitative disposition of the trajectories of the system (1.2), it is easy to see that the surface $z=\varnothing(x, y)$ will be slip surface at all its points. This is cunfirmed by computations similar to those made in the proof of Theorem 1 . Hence, the representative point of the system (2.2) either approaches asymptotically the origin directly as $t \rightarrow \infty$ or it hits first the slip surface arter a certain time and then also approaches the origin asymptotically by having moved over the surface.

BIBLIOGRAPHY

1. Barbashin, E.A. and Tabueva, V.A., Teorema ob ustoichivosti odnogo differentsial'nogo uravneniia tret'ego poriadka s razryvnoi kharakteristikoi (Theorem on the stability of the solution of a third order differential equation with discontinuous characteristic). PMM Vol. 27 , № 4, 1963.
2. Emel'ianov, S.V. and Utkin, V.I., Primenenic sistem zvtomaticheskogo regulirovaniia s peremennoi strukturoi ilia upravleniia ob"ektami, parametry kotorykh izmeniaiutsia v shirokikh predelakh (Use of automatic control systems with variable structure to control objects whose parameters vary within broad limits). Dokl.Akad.Nauk SSSR, Vol.152, № 2, 1963.
3. Nemytskii, V.V. and Stepanov, V.V., Kachestvennaia teorila differentsial' nykh uravnenii (Qualitative Theory of Differential Equations). Gostekhteoretizdat, 1949.
4. Krasovskii, N.N., Ob ustoichivosti dvizheniia v tselom pri postoianno deistvuiushchikh vozmushcheniiakh (On stability of motion in the large under constantly acting perturbations). PMM Vol.18, № 1, 1954.
5. Barbashin, E.A. and Skalkina, M.A., K voprosu ob ustoichivosti po pervomu priblizheniiu (On the problem of stability in first approximation). PMM Vol.19, № 5, 1955.
6. Barbashin, E.A. and Krasovski1, N.N.: Ob ustoichivosti dvizhenila v tselom (On stability of motion in the large). Dokl.Akad.Nauk SSSR, Vol. 86 , № 3, 1952.
