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A method of stabilizing nonlinear third order control systems is sonsidered.
The property of stabllity is achieved by increasing certain system parameters,
Fxactly as in (1], points in the phase space are first transferred to a cer-
taln surface and then move over this surface to the origin of the coordinates
in a slip regime. However, in contrast to [1], fhe introduction of addi-
tional changed parameters permits to insure a slip regime for any motion
throughout the whole time starting with a certaln instant, and this affords
the possibllity of obtaining the property of asymptotic stability of the zero
solution,

Correctlon of a linear system by using many changed parameters was studied
earlier [ 2], however, only the clip conditions are obtained herein and sta-
bility quesiions are not considered. Let us note that in the linear case
the possibllity of achleving the asymptotic stadbllity proprty for & third
order system has been established on the basis of an idea in [1] by V.P.Ba-
ranovskii,

1. Let us consider the differential equation
£ F (w7, o7 )+ (K 2]+ Kyl 7)) sign @7 —@ (,2) =0 (14)

Here K and K, are positive parameters r{x,x*,x} t) and o(x,x) are
contunuous functions of thelr.arguments for all values of x,x*,x" and ¢3 O.

Equation (1.1} is equivalent to the system
@ =y, yma, f= e Fry, s ) — (K2 K lyDsign(z — ¢ (@, 9) (1.2

Let us assume compliance with conditions

a) |F (e,y, 2 0)]<ala]-+- blyl-r¢lz| for any values of x, ¥y, z and £ 320,
Here a, p and ¢ are non-negative constants.

t} The function o{x,y) is defined everywhere and is continuously differ-
entiable wlth respect to x and y , where positive numbers ¥ and ¥
exist sueh that
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o
¢) 2p(x,0)<C0 for z=£0
0
YO @Y —9E01<0 for y£0, | g 0de=o

Too

It is easy to see that the right-hand sice of the third eguation of (1.2)
undergoes a discontinuity on the surface § which 1s glven by Equation
2= @ (z,¥). Let r(z,y,2 =:z2—0(zy. If

. dr dr
im —- >0, lim <0
am g gy <

where the derivative gr/ gt 1s taken by virtue of the equations of the
system (1.2), then a motion is defined on the surface § which is described
by the system of differential equations

=gy =9y (1.3)

It 1s accepted to say in this case that the system (1,3) describes the slip
regime,

Let us note that the condition {a) guarantees continuation [3] (p.16) of
the motion of the system (1.2) at least up to the time when the point hits
the surface § . If all the points of a certain domain ¢ of the phase
‘'space hit the surface § during their motion, and then move over § to the
origin with rising ¢ by virtue of the system {(1.3), then the required pro-
perty of asymptotic stablility of the zero solution is obtalned.

Theorem 1.1 . Let the functions plx,y,z,t) and olx,y) satisfy
conditions {a), (b) and (c) and let the parameter ¥, be fixed and selected
according to the inequality

Kiy>b+ M+ N+ N2 1.4

and let the bounded domain (¢ of the phase space be given. A positive num-
ber K, can be indicated such that for ¥ > k, the zero solution of the
system (1.2) will be asymptotically stable, where the domain ¢ will lie
in a region of atvtraction of the origin,

Proof . Let us first show that by increasing ¥ , the slip regime
of the whole surface § can be obtalned. Actuall{, taking the derivative
of the function r{x,y,z) by virtue of the system (1.2), we have

%}x@(x,y, rt) — (Klzl+ Ky |yl signr (1.5)

Here
O Gy ) = — F (o3, 14 @ (3, O — Sey— 5o+ (@ 9)

The functions r{x,y,z,t) and glx,y) satisfy the relations (a) and {v),
hence the functlon @tx,y,r,t) also satisfles an inequality analogous to
a
(@ @,y r)<Alz|+Bly[+Clr] .

where
A=a+4+ cM+ NM, B=b-+ M-+ cN 4 N3, C=c¢c~+ N

Let us calculate the limlt values of the derivatlve 4r/dt as the repre-
sentative point of the system {1.2) approaches the surface §
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. d
lim 77 =@ (5,3,0,0 + K|zl + Kily|> K — D]zl + K~ Byl
. d

lim —d—’;‘z(l)(x,y,o, ) —K|z|-Kily|<A—K)|z|+ (B —K)|y|
r—>+40

for all values of x and y .

In order to guarantee the slip regime on the whole surface r=z—w(x,y)=0
it is evidently sufficient to require compliance with the inequalities x> 4
and kx,» B . Let us now show that for any bounded domain ¢ of the phase
space, a value X,> O can be selected such that for ¥ > g, any point ¥ of
the domain ¢ moving along the trajectory of the system (1.2) with rising ¢
will hit the surface § .

Exactly as in [1], let us make a change of varlables in the system (1.2)

X=g2, Y=py, Z=¢p% t=p1, Kh
The new system will have the form

49X _ . dY (R=z -z, L

g = dT—Z R=7 —p%| X, p>> (1.6)
dZ . . Y Z
TE=—|X|s1gnR—szl|Y151gnR—p3F(X,T, -Ez—,pc)

For large values of f the quantity o plays the part of a small para-
meter, hence the simplifled system 1s written for p = 0 as

dX dY dZ
=Y =i @

Boundedness of pe(X, ¥/p) for small p and bounded ¥ and ¥ fcllows
from condition (b).

In [1, (2.3)] the system (1.7) has been investigated and 1t has been shown
that any point of the phase space moving wilth rising ¢ along the trajectory
of the system {1.7) will hit the surface § at a finite time. Only points
in phase space which lle on the integral line ¥ = — ¥ = 7 are the exception;
they approach the orlgin of the coordilnates asymptotically.

Boundedness of the quantity p?#(X, p~*7Y, p~2Z, pot) in the domain ¢ for
small vaiues of p follows from condition (as. Selecting p to be suffi-
ciently small and using the well-known consideration resulting from the pro-
perty of continulty of the sclutions in a parameter, we arrive at the conclu-
sion that all points of the domain ¢ (with the exception of a narrow enough
vicinity along the line x =~ ¥ = Z ) which move by virtue of the system
(1.6), will hit the surface § 1in a finite time interval and points of the
vicinity mentioned will elther emerge from this vicinlty as time rises and
hit & , or will remaln within it and, therefore, will also hit § 1n a
finite or infinite time interval,

Having fallen on the surface § , the representatlive point will move over
1t by virtue of the system (1.3). Conditions (c) guarantee asymptotic sta-
bility of the zero solution of thils system according to [4]. Hence, 1t has
been shown that any point of the domain ¢ w11l approach the orlgin asymp-
totically.

Since the definition of asymptotic stability includes the requirement of
compliance with the usual property of stability in the Liapunov sence, 1t is
still necessary to show now that the points of a sufficiently small neigh-
borhood of the origin of the coordinates do not emerge beyond the limits of
the glven neighborhood.

To do this, let us replace the coordinate Z 4in the system (1.6) by the
new coordinate R == Z — P2 (X, Y/p). The new system will have the form

= — | X|sign R 1.7

(1.8)

dX day dz .
=Y, d_,c=R+qu1(‘X1er)1 E=—|X|SlgnR+PF1(X,Y:Z,P:’C)

dz
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where o, (X, ¥, p) and r{x, ¥, 2 T} also satisfy conditions of t
{&} ond tb : ) 1 2 Ly P ¥ ype

j

Consldering the half-space £ > 0 for definl%eness, let us write the
simplifiied system as

dXx dy dR
Loy, G=R  GT=-lX| (1.9)

Bvidently the positive quantity R decreases and ¥ inecreases, along the
trajectories of the system {1.9). Let is first show that for an arbitrary
initial point #,{%,, ¥, R,) the following lemma is valid:

Lemma . The point #{7) moving along the trajectory of the system
(1.9) can not be in the domain [x|> &, R # O more than R, /& time units.

Actually, we have A < B — 6t from the last equation of (1.9), where 1
is measured from the”instant at which compllance with the inequality lx|l > 6
starts., If =1,> R, /% then RA{r,) will be negative, which may not be since
the 7 = O plane 13 the slip plane.

Hence, within the time interval {0, 71,] the point xir} either falls
in the domain {x{< & or hits the plane 7 = G.

Let us note that 1f X< -8 and ¥Y¥< O or Y>> 4§ and Y>> 0 along
the trajectory, then the point j(r) can hit only the & = 0 plane. It
hence follows that this point may be in the domein |¥} < & not more than
twice.

Now, let the initial point 4, 1ie in the domain (Xl <&, |Kl<s,
0< B,< & . Let us estimate the coordinates x{+}, r{s} and R{;} of the
point M{T} moving from the point §, along the trajecltory of the system
{1.9) wp to the tlme of meeting the plane £ = 0 . Let us first show that
the inegquality

— 82 ¥V (5) < 4d (1.10)
holds,

Let us assume that ¥,> O . Since x{r} and r{s} may only rise, then
let %, denote the time when X{v,) = % and let =+,” denote the time when
{1} = 6. We let 1, dencte the time when the point ¥{r] meets the =0
plane.

According to Lemma, 1f 1, == then l}((w)l < § for all positive values
of 1 , if also /= = , then the inequality (1.10) will hold. Two cases
are possible. In the rirst case, let us assume that w,¢ 7,/ .

According to {1.9), we have Y () — Y (1) S Ry {x — ¢’} for © 22 Te's but
since 1 — Ty < Ty — ¢ < 1, according to Lemma, we then obiain ¥ (1)< 25,
U o K35 w

In the second case let us assume that r1,/< 1, and let us estimate the
difference T1,— 1o’ . According to (1.9) we have

6 LY (R) < Ry(x — )+ 0 when = >y (1.41)
The left-hand side of this in quallity yields the estimate

B {1y — o) + X {tg) < X (19),

from which 1, — 1.’ ¢ 2 follows. The right-hand slde of the same inequality
(1.11) ylelds the estimate Y (#) 2l B (x — 74 -+ g — To) - O < 48, since
according to Lemma 1t - T,<1 .

Now let us consider the case when ¥,<0 . If ¥{r} does not change
sign, then {1.10) 1s satisfied. If ¥{r} changes sign at the time = ,
then two cases sre agaln possible. In the case [¥{7Jl < & for 1> =5
the point wm{7} falls under the conditions which have been considered above,
If however x{ts) < =~ & , then according to Lemma the point Mgf; can not
be ocutside the strip \XI < § more than one time unit, but ¥lr may
inerease but not more that & within this time and, hence, the point y(r)
again falls into the domain |x| < & , |¥] < 8 and the quantity ¥(r) will
be positive and, therefore, will satisfy the estimate (1.10).
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Let us now show that until the point x(+r) hits the R = O plane,the
inequality

—28< X (z) < 58 (1.12)
willl hold.

Indeed, if the point n(r) emerges into the domain ¥ > & , it will not
return to the strip |x| < 8 and it must hit the R = O plane. But in
this case, X (1) — X (tg <Y () (t — 74) for 7To< 1t <1y follows from (1.9)

It follows from Lemma that 1 — r,< 1 and from inequality (1.10) we have
0< ¥(7) < 58 . Hence, 6 < x(1) < 55 .

If the point x(r) emerges into the domain X <- § at the time 171, then
it will either hit the R = 0 plane without returning to the strip |r|<
or it will return to this strip. In the first case we obtailn

— 3t —t) < X (t) — X (x4,

from which X(Tf > — 28 follows. In the second case the point y(r) returns
to the domain |x| < 8 , || < 8 and the situation already considered will
hold. Let us note that the minimum value of x(t,) in the s.cond case will
satisfy the inequality x(t,) > — 28 . The inequalities (1.10) and (1.12)
together with the inequality |R(t)] < 8 prove the asymptotic stability for
a simplified system only. It follows from the discussion presented above
that the point #(7) can be outside of the domain |x| < &, |¥] < & not more
than tiree units of time. Having used the known estimates of the deviation
of the solution [5], 1v can be shown that the same estimates with the accu-
racy of small orders of 58 hold for trajectorles of the system (1.8) start-
ing on the boundary of the mentioned domain.

Since the dynamical system on the & = O plane has the asymptotic sta-
bility property and all the solutions have the property x(¢) - O, y(¢) - ©
and z(¢t) - 0 as ¢ - = according to what was proved above, then the asymp-
totic stabllity of the zero solution of the system (1.2) 1s now oovious.

Note 1.1.Let 2>0, yo>>0 and 2, > @ (%, ¥s)- Using the result
of Lemma, 1t 1s easy to obtain an estimate of the time of hit I of the
point ¥ (xo, Yo s zo¥ onto the slip surface & for the system (1.2). Tnis
estimate has the form

2o — @ (2g> Yo)
r<2=R I G 4o )

where 0(p) denotes the order of magnitude of the smallness of o .

If x0, yo and 2z, are numbers of arbitrary sign, the total residence
time of the representative point in the domain |x| > &, 2z # 9(x,y) will not
exceed

R R )

Note 1.2. The method of obtain’ng the inequalities (1.10) and
21.12) ermits replacement of the constraint of compliance with conditlons
a), (bg end (c) in the whole phase space by the constraint of satisfying
them in a certain bounded domain ¢, . The proposed method may be used to
estimate the domain ¢, .

2. Let us consider the differential equation
2+ F (2, o, &) - (K 2| + Ky || + Kpje'| sign @7 — @ (z,2) =0 (2.4)

where the functions F{x, x*, x') and ol(x, x°) again satisfy conditions
(a), (b) and {c). In contrast to the previous case, let us assume however,
that the function F(x, x*, x") 1s explicitly independent of ¢

Equation (2.1) is equivalent to the system (2.2)

=gy =217=—F(@y 2 —K|z|4 K ly|+ K.| z|) sign (z — ¢ (z, ¥))
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Theorem 2.1 If the functions - Flx )

.1, » ¥s» z) and «(x, y) satisfy
the conditions (a), (b) and {c¢) and the parameters’ ¥, ¥, and y; are chosen
according to the inequalities

K >a, Ky >b+ M1, Ko c4 N (2.3)

then the zero solution of the system (2.2) will be asymptotically stable in
the large.

Proof . Let us introduce the new coordinate r = z-c(x, y), the
system (£.2) in the new x, y and r coordinates will be
z =y y=r4+e¢@y (2.4)
: , o o
r==Ff@y ey -y — g0+ e () -
— (Ktx|+ Kylyl + Kol r + @ (2, y) ) sign r
Let us consider the Liapunov function
x
PR INEYY 2Sq; (x, 0) dx (2.9)

0

It follows from condition (c) that the function » will be positlve defi-
nite and infinitely large [6].

Computing the derivative of the function ¢ , by virtue of {2.4) we obtaln
dv

7 Cwle (Y —e @ 0] =2 HIK|z| 4 K|yl Kl r+ 9 (z, 9)]) 5

o
+ Zr[—— Fr,y,r+¢(e,y) — %y—— ‘;g; (r--¢ (x, ) + 1’]

Taking account of conditions (a) and (b), we obtain

dv
—2fr| K —a) |zl + (K —b—M—1) |yl 4 Ky —c—Nr+o @il

Since the relationships (b) and (2.3) are satisfied by the conditions of
the theorem, it then follows from the last inequallty that the derlivative of
the functlon U taken by virtue of the system (2.4), will be a negative
function, vanishing on the x-axis., Evidently there are no entire tra'ecte-
ries of the system (1.2) on the x-axis with the exception of the singular
point 0(0,0,0); moreover, the function v 1is infinitely large. Hence,
Thecrem 4 of [6] may be applied, which indeed completes the p:roof of our
theorem.

As regards considerations relative to the qualitative dispositlon of thc
trajectories of the system (1.2), it 1s easy to see that the surface
z = olx, y) will be slip surface at all its points. This is confirmed by
computations similar to those made in the proof of Theorem 1. Hence, the
representative point of the system (2.2) elther approaches asymptoticall
the origin directly as ¢t - « or it hits first the slip surface after a
certain time and then also approaches the origin asymptotically by having
moved over the surface.
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